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The world’s most highly assured operating system kernel

Unparalleled mathematical proofs 
of correctness and security

⇒ The most trustworthy foundation
for safety- and security-critical systems
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Unparalleled mathematical proofs 
of correctness and security

(FC) (integrity&confidentiality)
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Unparalleled mathematical proofs 
of correctness and security

NOW  &  IN THE FUTURE

More architectures verified

More features verified

More platforms verified

Less need for 
expertise & maintenance

More cores
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Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: 5 main areas Proofcraft is working on

More architectures verified

More features verified

More platforms verified

Less need for 
expertise & maintenance

More cores
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More architectures verified

More features verified

More platforms verified
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Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
      + automation for new ones

See next talk

Done: abstract invariants
Now: refinement proofs
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Done
Ongoing
Future

seL4 proofs 

(non-MCS, unicore)

AArch64

Arm 64-bit (HYP!)

RISC-V 64-bit

x86 64-bit

Arm 32-bit

NEW!
👍 NCSC

(HYP)

(no HYP)

Done: FC
Now: integrity (Q1’25)
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What is MCS?

- Support for Mixed-Criticality Systems

- Time as a resource
   -  scheduling context objects
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The proofs have evolved with new features over the years
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The proofs have evolved with new features over the years

Two examples:
• bound notification endpoints
• bitfield scheduler optimisation
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The proofs have evolved with new features over the years

Two examples:
• bound notification endpoints
• bitfield scheduler optimisation

MCS is different:
• large, invasive change



Big Feature: Mixed-Criticality Systems
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non-MCS

MCS



Verification of multiple configs in parallel

Arm
32-bit

RISC-V
64-bit

functional

abstract spec

design spec

formalised C

proof

proof

invariants

functional 
correctness
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non-MCS

MCS

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

👍 DARPA (PROVERS)
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What makes MCS so difficult to verify?
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What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

- Many new functions in the kernel (in particular, new system calls)

- Many pre-existing functions are now much longer

- New invariants required, pre-existing invariants impacted



Loops in MCS
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‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together… and keep merging refills until 
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at 
least 2 * WCET —> new system-wide invariant

Data refinement? Ring buffer of refills versus list of refills



Conclusion
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https://proofcraft.systems

More architectures verified

More features verified

More platforms verified

More cores
Less need for 

expertise & maintenance

Unparalleled mathematical proofs 
of correctness and security

https://proofcraft.systems

