
Michael McInerney | seL4 summit 2024, Sydney, Australia

seL4® verification: status and plans
Michael McInerney @ Proofcraft

seL4 is a registered trademark of LF Projects, LLC

2

3

The world’s most highly assured operating system kernel

4

The world’s most highly assured operating system kernel

Unparalleled mathematical proofs
of correctness and security

⇒ The most trustworthy foundation
for safety- and security-critical systems

5

Unparalleled mathematical proofs
of correctness and security

6

binary verification

functional
correctness

security
init abstract spec

design spec

formalised C

proof

proof

invariants

Unparalleled mathematical proofs
of correctness and security

(FC) (integrity&confidentiality)

7

Unparalleled mathematical proofs
of correctness and security

NOW & IN THE FUTURE

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores

8

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: 5 main areas Proofcraft is working on

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores

9

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: status & plans in a nutshell

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
 + automation for new ones

See next talk

Done: abstract invariants
Now: refinement proofs

10

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: status & plans in a nutshell

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores See next talk

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
 + automation for new ones

Done: abstract invariants
Now: refinement proofs

11

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: status & plans in a nutshell

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores See next talk

Done: abstract invariants
Now: refinement proofs

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
 + automation for new ones

12

Done
Ongoing
Future

seL4 proofs

(non-MCS, unicore)

AArch64

Arm 64-bit (HYP!)

RISC-V 64-bit

x86 64-bit

Arm 32-bit

NEW!
👍 NCSC

(HYP)

(no HYP)

Done: FC
Now: integrity (Q1’25)

13

Arm 64-bit (AArch64)

Mixed-criticality support (MCS)

Automated platform port verification

Verified multikernel (MK) on multicore

Proof architecture split (arch-split)

Overview: status & plans in a nutshell

More architectures verified

More features verified

More platforms verified

Less need for
expertise & maintenance

More cores See next talk

Now: 18/32 configs verified (56%)
Aim: 90-100% for existing ones
 + automation for new ones

Done: abstract invariants
Now: refinement proofs

14

What is MCS?

15

What is MCS?

- Support for Mixed-Criticality Systems

16

What is MCS?

- Support for Mixed-Criticality Systems

17

What is MCS?

- Support for Mixed-Criticality Systems

- Time as a resource

18

What is MCS?

- Support for Mixed-Criticality Systems

- Time as a resource
 - scheduling context objects

19

The proofs have evolved with new features over the years

20

The proofs have evolved with new features over the years

Two examples:
• bound notification endpoints
• bitfield scheduler optimisation

21

The proofs have evolved with new features over the years

Two examples:
• bound notification endpoints
• bitfield scheduler optimisation

MCS is different:
• large, invasive change

Big Feature: Mixed-Criticality Systems

22

non-MCS

MCS

Verification of multiple configs in parallel

Arm
32-bit

RISC-V
64-bit

functional

abstract spec

design spec

formalised C

proof

proof

invariants

functional
correctness

23

non-MCS

MCS

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

👍 DARPA (PROVERS)

24

What makes MCS so difficult to verify?

25

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

26

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

27

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

- New invariants required, pre-existing invariants impacted

28

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

- Many new functions in the kernel (in particular, new system calls)

- New invariants required, pre-existing invariants impacted

29

What makes MCS so difficult to verify?

- Many new lines of code (an ~15% increase)

- New kernel objects (scheduling context objects and reply objects)

- Many new functions in the kernel (in particular, new system calls)

- Many pre-existing functions are now much longer

- New invariants required, pre-existing invariants impacted

Loops in MCS

30

Loops in MCS

31

‣ ‣ ‣ ‣
t_0 t_1 t_2 t_3

Time

Loops in MCS

32

‣ ‣ ‣ ‣
t_0 t_1 t_2 t_3

Time

Loops in MCS

33

‣ ‣ ‣
t_0 t_1 t_2 t_3

Time

Loops in MCS

34

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem…

Loops in MCS

35

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Loops in MCS

36

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together…

Loops in MCS

37

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together… and keep merging refills until
we have at least 2 * WCET (overflow?)

Loops in MCS

38

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together… and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination?

Loops in MCS

39

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together… and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at
least 2 * WCET —> new system-wide invariant

Loops in MCS

40

‣ ‣ ‣
t_0 t_1 t_2 t_3

TimeProblem… we need at least 2 * WCET in the head refill

Solution: merge refills together… and keep merging refills until
we have at least 2 * WCET (overflow?)

Termination? The scheduling context must have a budget of at
least 2 * WCET —> new system-wide invariant

Data refinement? Ring buffer of refills versus list of refills

Conclusion

41

https://proofcraft.systems

More architectures verified

More features verified

More platforms verified

More cores
Less need for

expertise & maintenance

Unparalleled mathematical proofs
of correctness and security

https://proofcraft.systems

