
Running Certified
Operating Systems
under the seL4
Hypervisor

Chris Guikema

chris.guikema@dornerworks.com

Michigan, USA

Agenda

○ What does a Hypervisor need to do?

○ How is the CAmkES-VM (and VMM libraries) built around Linux?

○ What is Deos?

○ How can the CAmkES-VM Support Deos & Linux?

○ How can we certify seL4 Hypervisor based systems?

2

Background

○ What does a Hypervisor need to do?

○ At a high level, it needs to:

• Context switch Guest Operating Systems

• Provide Stage 2 (ARM) or EPT (x86) Translations

• Emulate necessary hardware resources that either seL4 owns or a VM may need to share

• Interrupt controller, Serial, Timers, etc...

• Handle guest faults and events

• Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

3

Background

○ What does a Hypervisor need to do?

○ At a high level, it needs to:

• Context switch Guest Operating Systems

• Provide Stage 2 (ARM) or EPT (x86) Translations

• Emulate necessary hardware resources that either seL4 owns or a VM may need to share

• Interrupt controller, Serial, Timers, etc...

• Handle guest faults and events

• Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

4

Background

○ What does a Hypervisor need to do?

○ At a high level, it needs to:

• Context switch Guest Operating Systems

• Provide Stage 2 (ARM) or EPT (x86) Translations

• Emulate necessary hardware resources that either seL4 owns or a VM may need to share

• Interrupt controller, Serial, Timers, etc...

• Handle guest faults and events

• Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

5

NO seL4 KERNEL MODIFICATIONS WERE
REQUIRED

6

Guest State Post VMM Initialization

What Operating Systems has the CAmkES-VM Run?

7

What Operating Systems has the CAmkES-VM Run?

8

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

9

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

10

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

11

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

12

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

13

[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x00000000000004ff] reserved
[0.000000] BIOS-e820: [mem 0x0000000000000500-0x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x0000000010002fff] reserved
[0.000000] BIOS-e820: [mem 0x0000000010003000-0x0000000030002fff] usable
[0.000000] BIOS-e820: [mem 0x0000000030003000-0x00000000ffffffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000015fffffff] usable

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

14

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Emulate necessary hardware resources

○ On x86, there are (usually) 4 available timers:

• PIT

• HPET

• LAPIC Timer

• TSC

15

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Emulate necessary hardware resources

○ On x86, there are (usually) 4 available timers:

• PIT

• HPET

• LAPIC Timer

• TSC

16

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Emulate necessary hardware resources

○ On x86, there are (usually) 4 available timers:

• PIT

• HPET

• LAPIC Timer

• TSC

○ Userspace VMM connects to TimeServer component to set absolute timeouts

○ Timeserver is backed by either the physical PIT or the HPET hardware

○ MMIO/IOPort Emulation sets timeouts for Linux

○ Linux uses the PIT/HPET to calibrate TSC, and for system tick IRQ

17

[1.855732] clocksource: Switched to clocksource tsc

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

18

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Handle guest faults and events

○ Lots of expected faults the VMM handles:

• EPT Violations

• CPUID Calls

• MSR Reads/Writes

○ Let’s follow the EPT Violation Path:

1. Get EPT Violation Physical Address and R/W

2. Read the faulting instruction (e.g 0x44 0x8b 0x20 == mov r12d, [rax])

3. Decode the instruction to determine which register to read from/write to

4. Call a fault handler (LAPIC Emulation)

5. Get/Set the Fault Data (decodes the Instruction again)

6. Set the Instruction Pointer to the next instruction

19

Linux CAmkES-VM “Dependencies”

• Hypervisor Requirement: Handle guest faults and events

20

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

21

Linux CAmkES-VM “Dependencies”

○ Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread

○ Example: Virtio-Net

1. seL4 emulates the PCI Bus

2. seL4 places a virtio-net device on the PCI bus, accessed via IOPorts

3. IO Port handlers read virtio-net descriptors and route packet to destination via virtqueues

○ Linux is really flexible!

• Supports legacy and modern VirtIO interfaces

• Reads access information from a PCI scan

• Can support either IO Ports or MMIO access

22

Summary

○ The CAmkES VM for x86 was specifically built around running Linux as a VM

○ The Memory Configuration, VCPU Initialization, Hardware Emulation, and VirtIO all assume a Linux guest

○ However, Linux isn’t the only Operating System out there

○ The CAmkES-VM should also support other Operating Systems

• VxWorks

• RTEMS

• Deos

23

What are DO-178C & Design Assurance Levels?

24

○ DO-178C, Software Considerations in
Airborne Systems and Equipment
Certification is the primary document by
which the certification authorities such as the
FAA approve all commercial software-based
aerospace systems.

○ Design Assurance Levels (DAL)

• Determined from safety assessment and hazard
analysis

○ What about formal methods?

• DO-333 discusses using formal methods to certify
against DO-178C

What is Deos?

○ Certified, Safety-Critical RTOS developed by DDC-I

• High performance, Multicore

• Supports ARM, x86, PPC

• Conforms to FACE Technical Standard v3.1

○ Verifiable to DO-178C Design Assurance Level (DAL) A since 1998

○ Enables time, space, and resource partitions

• Like seL4, it uses user mode drivers, making it easy to build a driver to the DAL required

• All I/O is not required to be DAL A

• DAL-A Linker/Loader for Binary Modularity

• Enables software reuse & certification

• Each application and library has a DAL with a full certification package

25

What is Deos?

○ Unmatched record of deployment,
support, and certification

• > 10,000 aircraft

• > 10,000,000 flight hours

• > 40 aircraft types

• > 100 certifications

○ Performance

• Multicore – Safe Scheduling, Cache
Partitioning

• Quick boot up times

26

Deos Certification Process

27

Title Doc Number

“Plan for Software Aspects of Certification for DDCI Software” (PSAC) DDCIDOC1

“Deos Software Component Descriptions” (DEOSDOC1a) DEOSDOC1a

“DDCI Additional Considerations Document” (DDCIDOC1b) DDCIDOC1b

“Software Development and Verification Plan for Software” (SDVP) DDCIDOC2

“Software Configuration Management Plan for DDCI Software” (SCMP) DDCIDOC3

“Software Quality Assurance Plan for DDCI Software” (SQAP) DDCIDOC4

“Target System” PSAC

The following components

are described in DEOSDOC1a:

• C1

• C2

• …

Deos PSAC

(DDCIDOC1)

Sections 2 & 3

Component descriptions are

provided in DEOSDOC1a.

Deos Component Descriptions

(DEOSDOC1a)

Component 1

Component 2

…

Deos Software Life Cycle (DSLC)

28

Integration

2.1.3

Software Requirements
 and Design

2.1.1

Software
Coding

2.1.2

Requirements and
Design Review

2.2.2.1

Coding
Review

2.2.2.2

Integration
Review

2.2.2.3

Test Case
Definition

2.2.1.1

Test Procedure
Definition

2.2.1.2

Software
Testing

2.2.1.3

Test Case
Review

2.2.2.4

Test Procedure
Review

2.2.2.5

Testing
Review

2.2.2.6

start

finish

D1 D2

T1

T2

V2 V3

V5 V6

V7

R1

R4

R2

R5

R7

R6

VF1 VF2 VF3

VF5 VF6

VF7

1

DF1 DF2

TF1

TF2

R3

TF3

 V1

TF6

Deos Test Environment

29

Raw
Trace
Data

Trace Matrix

Control

Test Results
(including raw
coverage data)

Test

Fixture

Workstation

Software
Coverage

Analysis

Software,
Test Procedure
& Test Registry

Processed
Coverage

Data

Raw
Coverage

Data

Traceability

Analysis

Goal:

○ Two VM Configuration

○ Deos + Linux

• Deos uses QEMU-x86_64 Platform

○ VirtIO Network Channel between VMs

• Network bridge ensures Deos has access to external
network

○ Any changes we make to the CAmkES-VM need to be
backwards compatible!

• And should be expandable for other Operating Systems

○ Allows for general purpose applications to run in Linux
alongside DAL certified applications running in Deos

30

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

31

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

○ Deos Requirement: Static Memory Map from 0x0 -> 0x4000_0000

32

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Provide Stage 2 (ARM) or EPT (x86) Translations

○ Deos Requirement: Static Memory Map from 0x0 -> 0x4000_0000

○ Problem: x86 CAmkES-VM uses anonymous memory regions for guest RAM

• e820 Map allows memory to be “anywhere”

○ Solution: ARM CAmkES-VM already provides static memory maps using the “vm_ram_register_at” functions

○ Still need to provide a method for the VMM to specify a memory range, instead of a “guest_ram_mb” parameter

33

Adding Deos Support to CAmkES-VM

34

Adding Deos Support to CAmkES-VM

35

IF VM == Linux:

 vm_ram_register // Pulls from anon regions

 find_large_region(&addr)

ELSE IF VM == Deos:

 vm_ram_register_at // Specifies region to map

 addr = vm_config.kernel_addr

vm_load_guest_kernel(addr)

Adding Deos Support to CAmkES-VM

36

○ Linux uses the boot_info struct

• Tells Linux crucial boot information, including kernel, ramdisk, memory,
and command line

○ Deos expects to be booted from a Multiboot compliant bootloader

• Therefore, Deos needs a multiboot struct in its initial memory

• Contains much the same information as Linux boot_info struct

○ Libraries modified to search for multiboot header in first 2048 bytes of
kernel image

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

37

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Emulate necessary hardware resources

○ Deos Requirement: QEMU-x86_64 Platform needs the LAPIC Timer

38

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Emulate necessary hardware resources

○ Deos Requirement: QEMU-x86_64 Platform needs the LAPIC Timer

○ Problem: seL4 does NOT support the LAPIC timer

○ Solution: Leverage the Open-source Community and pull in a LAPIC Timer PR

○ Initialize timers based on VM Configuration

39

Adding Deos Support to CAmkES-VM

40

Adding Deos Support to CAmkES-VM

41

IF VM_Config.PIT:

 pit_init()

IF VM_Config.HPET:

 hpet_init()

IF VM_Config.LAPIC:

 lapic_init()

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

42

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Handle guest faults and events

○ Deos Requirement: Handle (extra) guest faults and events

○ Deos’s EPT violations required adding support for 2 extra MOV instructions, and fixing the MOV_IMM emulation

• EPT Violations were ignoring the Immediate value, so the LAPIC wasn’t properly initialized

43

Adding Deos Support to CAmkES-VM

○ Hypervisor Requirement: Handle guest faults and events

○ Deos Requirement: Handle (extra) guest faults and events

○ Deos’s EPT violations required adding support for 2 extra MOV instructions, and fixing the MOV_IMM emulation

• EPT Violations were ignoring the Immediate value, so the LAPIC wasn’t properly initialized

44

Adding Deos Support to CAmkES-VM

○ QEMU to the rescue!

○ QEMU has an x86 decoder and emulator pulled in from the Veertu Hypervisor

○ Supports decoding all x86 OPCodes

○ Ported the decoder and emulator for use in the seL4 VMM Libraries

• Emulator required a bit more porting to integrate with EPT Violation path

• EPT Violations just require the register to read from / write to, and sometimes an immediate value

45

Adding Deos Support to CAmkES-VM

46

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

47

Adding Deos Support to CAmkES-VM

48

○ Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

○ Deos Requirement: The QEMU-x86_64 Deos Target needs a Virtio Ethernet Device

Adding Deos Support to CAmkES-VM

49

○ Hypervisor Requirement: Create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

○ Deos Requirement: The QEMU-x86_64 Deos Target needs a Virtio Ethernet Device

○ Deos has a virtio-net library, and VirtIO is a standard, so it should drop into place

○ Two Problems:

1. Deos assumes a Modern VirtIO Backend

2. Deos uses MMIO regions to access the VirtIO Backend

Adding Deos Support to CAmkES-VM

50

○ Solution #1: The Deos Library can be configured to use Legacy VirtIO

Adding Deos Support to CAmkES-VM

51

○ Solution #2: We can modify seL4 VirtIO backend to support MMIO access

○ common_make_virtio_net_mmio

• Does all VirtIO initialization

• Create EPT Fault handler for specified MMIO region

• Uses same VirtIO offsets

Checklist

○ Provide Stage 2 (ARM) or EPT (x86) Translations

○ Emulate necessary hardware resources

○ Handle guest faults and events

○ Optionally, create interfaces between VMs or a VM and an seL4 Thread (VirtIO)

52

Deos Output

53

Deos Output

54

How would this system be certified?

○ Goal: Reuse existing Deos certification artifacts

○ First consideration: The Hypervisor itself would need to be certified

• RTCA DO-333 Formal Methods Supplement to DO-178C and DO-278A provides guidance to software developers wishing to use
formal methods in the certification of airborne systems [1]

• For seL4, Hypervisor Configurations would need to be certified

• AARCH64 has Hypervisor Mode verified

• x86, RISC-V do not

• Assuming seL4 has the proper verified configurations, the VMM must also have certification artifacts

55

How would this system be certified?

○ Second consideration: The Hypervisor itself needs to provide as close to an identical execution environment as
possible

• MCS Configuration would be a must!

• Can give VM 100% of Core Execution. No round-robin scheduling tick

• Any servers would need to exist on secondary cores

• This would include VirtIO processing

• Need to consider the effects of the cache

• Deos has a patented cache coloring method to prevent interference in multicore environments

56

How would this system be certified?

57

○ Guest memory is backed with “random” untyped
objects

○ MMU is used to give each VM a standard address
space

• VMs are free to virtualize their own memory

○ VM’s running simultaneously on different cores can
still share a cache line

• This can force the processor to walk the MMU tables,
effecting the Worst Case Execution Time (WCET) of VM
applications

○ Solution: provide known untyped objects to back
guest memory

• Allows VMs to use their own cache coloring mechanisms

System Certification Summary

○ Start with formally verified seL4 Hypervisor configuration

• Use DO-333 framework to provide certification arguments for the seL4 Kernel

○ Update userspace VMM and provide certification documentation

○ Provide testing to prove minimal execution environment differences for Deos guest

○ Reuse Deos certification artifacts

58

What Conclusions Can We Draw?

○ The CAmkES-VM is capable of running non-Linux guests

○ Certification of seL4 Hypervisor based systems is possible with the right amount of funding

○ Current gaps:

• Verified Hypervisor configurations for x86_64 and RISC-V

• Verified configurations for Multicore & MCS

• Certification artifacts for userspace VMM

○ This setup would allow certified guests like Deos to re-use their certification artifacts when running underneath the
seL4 Hypervisor

59

Questions?

60

	Slide 1: Running Certified Operating Systems under the seL4 Hypervisor
	Slide 2: Agenda
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Guest State Post VMM Initialization
	Slide 7: What Operating Systems has the CAmkES-VM Run?
	Slide 8: What Operating Systems has the CAmkES-VM Run?
	Slide 9: Checklist
	Slide 10: Linux CAmkES-VM “Dependencies”
	Slide 11: Linux CAmkES-VM “Dependencies”
	Slide 12: Linux CAmkES-VM “Dependencies”
	Slide 13: Linux CAmkES-VM “Dependencies”
	Slide 14: Checklist
	Slide 15: Linux CAmkES-VM “Dependencies”
	Slide 16: Linux CAmkES-VM “Dependencies”
	Slide 17: Linux CAmkES-VM “Dependencies”
	Slide 18: Checklist
	Slide 19: Linux CAmkES-VM “Dependencies”
	Slide 20: Linux CAmkES-VM “Dependencies”
	Slide 21: Checklist
	Slide 22: Linux CAmkES-VM “Dependencies”
	Slide 23: Summary
	Slide 24: What are DO-178C & Design Assurance Levels?
	Slide 25: What is Deos?
	Slide 26: What is Deos?
	Slide 27: Deos Certification Process
	Slide 28: Deos Software Life Cycle (DSLC)
	Slide 29: Deos Test Environment
	Slide 30: Goal:
	Slide 31: Checklist
	Slide 32: Adding Deos Support to CAmkES-VM
	Slide 33: Adding Deos Support to CAmkES-VM
	Slide 34: Adding Deos Support to CAmkES-VM
	Slide 35: Adding Deos Support to CAmkES-VM
	Slide 36: Adding Deos Support to CAmkES-VM
	Slide 37: Checklist
	Slide 38: Adding Deos Support to CAmkES-VM
	Slide 39: Adding Deos Support to CAmkES-VM
	Slide 40: Adding Deos Support to CAmkES-VM
	Slide 41: Adding Deos Support to CAmkES-VM
	Slide 42: Checklist
	Slide 43: Adding Deos Support to CAmkES-VM
	Slide 44: Adding Deos Support to CAmkES-VM
	Slide 45: Adding Deos Support to CAmkES-VM
	Slide 46: Adding Deos Support to CAmkES-VM
	Slide 47: Checklist
	Slide 48: Adding Deos Support to CAmkES-VM
	Slide 49: Adding Deos Support to CAmkES-VM
	Slide 50: Adding Deos Support to CAmkES-VM
	Slide 51: Adding Deos Support to CAmkES-VM
	Slide 52: Checklist
	Slide 53: Deos Output
	Slide 54: Deos Output
	Slide 55: How would this system be certified?
	Slide 56: How would this system be certified?
	Slide 57: How would this system be certified?
	Slide 58: System Certification Summary
	Slide 59: What Conclusions Can We Draw?
	Slide 60: Questions?

