
Corey Lewis | seL4 summit 2024, Sydney, Australia

seL4® Multikernel Roadmap
and Concurrency Verification
Corey Lewis @ Proofcraft

seL4 is a registered trademark of LF
Projects, LLC

Corey Lewis | seL4 summit 2024, Sydney, Australia

The world’s most highly assured operating system kernel*

2

Corey Lewis | seL4 summit 2024, Sydney, Australia

The world’s most highly assured operating system kernel*

* only when running on a single core

2

Corey Lewis | seL4 summit 2024, Sydney, Australia

The world’s most highly assured operating system kernel*

hardware

software

critical non-critical,
untrusted

* when running sequentially, without interference

✓erifiedvoid kernel_call () {
…
…
…

 }

3

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

hardware

software

critical non-critical,
untrusted

4

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

5

Better performance,
by using more cores

hardware

software

critical non-critical,
untrusted

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

Still high assurance

Better performance,
by using more cores

hardware

software

critical non-critical,
untrusted

✓erified

5

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

Concurrency

Still high assurance

Better performance,
by using more cores

hardware

software

critical non-critical,
untrusted

Formal Verification

✓erified

5

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

Concurrency

Still high assurance

Better performance,
by using more cores

hardware

software

critical non-critical,
untrusted

Formal Verification

Very hard!

✓erified

5

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

Concurrency

Still high assurance

Better performance,
by using more cores

hardware

software

critical non-critical,
untrusted

Formal Verification

Very hard!

Goal:
Allow use of multiple cores as soon as possible,

with incrementally stronger and stronger assurance

✓erified

5

Corey Lewis | seL4 summit 2024, Sydney, Australia

Overview

Goal:
Allow use of multiple cores as soon as possible,

With incrementally stronger and stronger assurance

Towards a verified static
multikernel seL4

✓ ✓ ✓

memory

What’s hard?
What have we got so far?

6

Corey Lewis | seL4 summit 2024, Sydney, Australia

Overview

Goal:
Allow use of multiple cores as soon as possible,

With incrementally stronger and stronger assurance

Towards a verified static
multikernel seL4

✓ ✓ ✓

memory

What’s hard?
What have we got so far?

7

Corey Lewis | seL4 summit 2024, Sydney, Australia

Very hard!

What’s hard?

Isn’t that solved?

There exist approaches for concurrency verification
that work for small / self-contained algorithms

Concurrency

Formal Verification

But:

8

Corey Lewis | seL4 summit 2024, Sydney, Australia

Very hard!

What’s hard?

seL4 is neither small nor high-level nor modular
(because it’s a microkernel and it is fast)

Isn’t that solved?

There exist approaches for concurrency verification
that work for small / self-contained algorithms

Concurrency

Formal Verification

But:

8

Corey Lewis | seL4 summit 2024, Sydney, Australia

What’s hard?

seL4’s existing verification framework is complex
(because it’s doing formal proof of low-level complex code)

Plus:

9

Corey Lewis | seL4 summit 2024, Sydney, Australia

What’s hard?

seL4’s existing verification framework is complex
(because it’s doing formal proof of low-level complex code)

Plus:

● > 1 million lines of proof
一 Developed over 15 years

● Three levels of specifications
一 Two very different specification languages
一 Needs to capture a lot of detail

● Many different configurations
一 Multiple architectures, multiple features, MCS

9

Corey Lewis | seL4 summit 2024, Sydney, Australia

What’s hard?

seL4’s existing verification framework is complex
(because it’s doing formal proof of low-level complex code)

Plus:

● > 1 million lines of proof
一 Developed over 15 years

● Three levels of specifications
一 Two very different specification languages
一 Needs to capture a lot of detail

● Many different configurations
一 Multiple architectures, multiple features, MCS

We want to maximise reuse of existing proofs

9

Corey Lewis | seL4 summit 2024, Sydney, Australia

10

The unicore situation

hardware

software

critical non-critical,
untrusted

✓erified

Corey Lewis | seL4 summit 2024, Sydney, Australia

10

The unicore situation

hardware

software

critical non-critical,
untrusted

✓erified

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

Corey Lewis | seL4 summit 2024, Sydney, Australia

10

The unicore situation

hardware

software

critical non-critical,
untrusted

✓erified

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

Assumed
atomic

Kernel
Mode

User
Mode

User
transition

User event
(syscall/interrupt)

Kernel
transition

Corey Lewis | seL4 summit 2024, Sydney, Australia

The unicore situation

C Code

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

Assumed
atomic

~10,000 LOC
>500 functions

void kernel_call () {
…
…
…

 }

Kernel
Mode

User
Mode

User
transition

User event
(syscall/interrupt)

Kernel
transition

11

Corey Lewis | seL4 summit 2024, Sydney, Australia

The unicore situation

C Code

Verified = the C code is correct (w.r.t its specification)
(+security, binary, etc. Ignored here for simplicity)

Specification

Assumed
atomic

~10,000 LOC
>500 functions

void kernel_call () {
…
…
…

 }

Kernel
Mode

User
Mode

User
transition

User event
(syscall/interrupt)

Kernel
transition

11

Functional Correctness

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

C Code

Specification
Kernel
Mode

User
Mode

User
transition

User event
(syscall/interrupt)

Kernel
transition

~10,000 LOC
>500 functions

void kernel_call () {
…
…
…

 }

12

Functional Correctness

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

C Code

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Kernel
transition

User
transition

Kernel
Mode

User
Mode

Kernel
transition

User
transition

Kernel
transition

User
transition

User event
(syscall/interrupt)

User event
(syscall/interrupt)

User event
(syscall/interrupt)

13

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
Mode

User
Mode

14

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency
1. User and User

一 Part of overall system design
一 Out of scope of kernel verification
一 Must reason about this for whole-system proofs

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
Mode

User
Mode

15

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency
2. User and Kernel

一 Must prove that the kernel does not depend on
what the user has access to

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

16

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency
3. Kernel and Kernel

一 Must prove that the kernel itself correctly handles
this

一 SMP seL4 does this with locks, the static
multikernel uses separation of resources

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

17

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Assumed
atomic

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency
3. Kernel and Kernel

一 Must prove that the kernel itself correctly handles
this

一 SMP seL4 does this with locks, the static
multikernel uses separation of resources

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

17

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Assumed
atomic

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Introduces three types of concurrency
3. Kernel and Kernel

一 Must prove that the kernel itself correctly handles
this

一 SMP seL4 does this with locks, the static
multikernel uses separation of resources

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

17

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Assumed
atomic

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Need a new model
and verification framework

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

18

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Assumed
atomic

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Need a new model
and verification framework

We want to maximise reuse of existing sequential proofs
where concurrency is controlled

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

18

Corey Lewis | seL4 summit 2024, Sydney, Australia

The multicore situation

Kernel
Mode

User
Mode

Assumed
atomic

Kernel
Mode

User
Mode

Kernel
Mode

User
Mode

Need a new model
and verification framework

We want to maximise reuse of existing sequential proofs
where concurrency is controlled

We have developed a proof-of-concept framework
for concurrent reasoning for seL4 with maximum reuse

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

Kernel
transition

User
transition

User event
(syscall/interrupt)

18

Corey Lewis | seL4 summit 2024, Sydney, Australia

The existing sequential framework (for unicore)

C Code

19

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

Corey Lewis | seL4 summit 2024, Sydney, Australia

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

The existing sequential framework (for unicore)

Nondeterministic
State Monad

Refinement

kernel_call_A ≡ …

C-to-Isabelle Parser
C program → SIMPL specification

20

Corey Lewis | seL4 summit 2024, Sydney, Australia

Atomicity

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

Proof-of-concept concurrent framework

Refinement

kernel_call_A ≡ …

COMPLX

Rely-Guarantee

Concurrent

C-to-Isabelle Parser
C program → COMPLX specification

Adjusted C Code Semantics

IsabelleRefinement
Concurrent

Refinement

Nondeterministic
State Monad

with
interference

21

Corey Lewis | seL4 summit 2024, Sydney, Australia

Atomicity

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

Refinement

kernel_call_A ≡ …

COMPLX

Rely-Guarantee

Concurrent

C-to-Isabelle Parser
C program → COMPLX specification

Adjusted C Code Semantics

IsabelleRefinement
Concurrent

Refinement

(to maximize reuse)
Small dive: interference monad

with
interference

Nondeterministic
State Monad

22

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

Sequential: Nondeterministic State Monad

state ⟶ (result, state) set

23

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

Sequential: Nondeterministic State Monad

state ⟶ (result, state) set

23

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

Sequential: Nondeterministic State Monad

state ⟶ (result, state) set

23

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

With concurrency?
Nondeterministic State Monad

24

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

With concurrency?

★

★

★

★

★

★

★

Nondeterministic State Monad

24

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

With concurrency?

★

★

★

★

★

★

★

Nondeterministic State Monad

24

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

With concurrency?
Nondeterministic State Monad

24

★

★

★

Corey Lewis | seL4 summit 2024, Sydney, Australia

Limited interference

25

Corey Lewis | seL4 summit 2024, Sydney, Australia

Small dive:

Concurrent: Interference Trace Monad

26

Corey Lewis | seL4 summit 2024, Sydney, Australia

state ⟶ (trace, (result, state)) set

Small dive:

Concurrent: Interference Trace Monad

26

Corey Lewis | seL4 summit 2024, Sydney, Australia

Atomicity

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

Proof-of-concept concurrent framework

Refinement

kernel_call_A ≡ …

COMPLX

Rely-Guarantee

Concurrent

C-to-Isabelle Parser
C program → COMPLX specification

Adjusted C Code Semantics

IsabelleRefinement
Concurrent

Refinement

Nondeterministic
State Monad

with
interference

27

Corey Lewis | seL4 summit 2024, Sydney, Australia

Atomicity

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

Proof-of-concept concurrent framework

Refinement

kernel_call_A ≡ …

COMPLX

Rely-Guarantee

Concurrent

C-to-Isabelle Parser
C program → COMPLX specification

Adjusted C Code Semantics

IsabelleRefinement
Concurrent

Refinement

Nondeterministic
State Monad

with
interference

28

Corey Lewis | seL4 summit 2024, Sydney, Australia

Atomicity

C Code Semantics

Design Specification

Specification

Isabelle

Isabelle

Invariants

Invariants

C Code

void kernel_call () {…} kernel_call_body ≡ …

SIMPL

Hoare Logic

Proof-of-concept concurrent framework

Refinement

kernel_call_A ≡ …

COMPLX

Rely-Guarantee

Concurrent

C-to-Isabelle Parser
C program → COMPLX specification

Adjusted C Code Semantics

IsabelleRefinement
Concurrent

Refinement

Nondeterministic
State Monad

with
interference

28

Now how do we apply this to update all of the seL4 proofs?

Corey Lewis | seL4 summit 2024, Sydney, Australia

Overview

Goal:
Allow use of multiple cores as soon as possible,

With incrementally stronger and stronger assurance

Towards a verified static
multikernel seL4

✓ ✓ ✓

memory

What’s hard?
What have we got so far?

29

Corey Lewis | seL4 summit 2024, Sydney, Australia

Progressive roadmap

✓

memory

✓

memory

Single core Multicore (SMP)

Need full concurrency
on Day 1

No assurance until
done

30

Corey Lewis | seL4 summit 2024, Sydney, Australia

Progressive roadmap: via static multikernel

✓ ✓ ✓

memory

✓

memory

✓

memory

One seL4 per core

Progressively building
stronger assurance

from Day 1

Single core Multicore (SMP)Static Multikernel

Increasing flexibility

31

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Each core runs a copy of the kernel
一 Each copy has separate resources and data structures
一 No kernel-kernel interactions

● User code communicates via shared memory and inter-processor
interrupts
一 seL4 API remains nearly identical

● Static partition of memory simplifies verification
一 Still provides increased utility and performance

Static multikernel configuration of seL4

✓ ✓ ✓

memory

32

Corey Lewis | seL4 summit 2024, Sydney, Australia

Assurance

Multikernel seL4 verification roadmap

33

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Verify code changes sequentially
一 Add IPI API

Assurance

Sequentially correct

Verify
sequentially

Multikernel seL4 verification roadmap

34

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Verify code changes sequentially
一 Add IPI API

Assurance

Sequentially correct

Verify
sequentially✔

Multikernel seL4 verification roadmap

34

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Identify required proof obligations
一 e.g. separation of resources between kernel instances

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…

Verify
sequentially

List
obligations

✔

Multikernel seL4 verification roadmap

35

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Prove required obligations in isolation
一 Proofs would still be sequential

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…

Verify
sequentially

List
obligations

Prove
obligations

✔

Multikernel seL4 verification roadmap

36

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Parametrise specifications to allow multiple instances of the kernel
一 Parameters such as physical memory location

Verify
sequentially

List
obligations

Parametrise
specifications

Prove
obligations

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…

✔

Multikernel seL4 verification roadmap

37

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Add coarse-grained concurrency to the automaton
一 Transitions are still atomic, some obligations will be validated

Verify
sequentially

List
obligations

Parametrise
specifications

Prove
obligations

Concurrent
automaton

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…
More proof obligations?

✔

Multikernel seL4 verification roadmap

38

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Exercise and complete concurrency framework
一 Monad rulesets, haskell translator, atomicity refinement, C-Parser, …

Complete
framework

Prove
obligations

Concurrent
automaton

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…
More proof obligations?

Verify
sequentially

List
obligations

Parametrise
specifications

✔

Multikernel seL4 verification roadmap

39

Assurance

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Prove functional correctness for multikernel
一 This is where full concurrency is introduced

Complete
framework

Prove
obligations

Concurrent
automaton

Prove
multikernel FC

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…
More proof obligations?

Verify
sequentially

List
obligations

Parametrise
specifications

✔

Multikernel seL4 verification roadmap

40

Corey Lewis | seL4 summit 2024, Sydney, Australia

● Prove functional correctness for multikernel
一 This is where full concurrency is introduced

Complete
framework

Prove
obligations

Concurrent
automaton

Prove
multikernel FC

Assurance

Sequentially correct
Separation of resources maintained
Isolation of kernels on different cores

…
More proof obligations?

Functional correctness!

Verify
sequentially

List
obligations

Parametrise
specifications

✔

Multikernel seL4 verification roadmap

41

Corey Lewis | seL4 summit 2024, Sydney, Australia

What do we want?

hardware

software

critical non-critical,
untrusted

Goal:
Allow use of multiple cores as soon as possible,

with incrementally stronger and stronger assurance

✓erified

42

Assurance

Proofcraft
Corey Lewis
Principal Proof Engineer

Thank you

