
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

seL4 Summit 2024, Sydney, Australia, 2024-10-17

Hardware Support for Time Protection

Nils Wistoff nwistoff@iis.ee.ethz.ch
Gernot Heiser gernot@unsw.edu.au
Luca Benini lbenini@iis.ee.ethz.ch

Team of 100 people in ETH Zürich – University of Bologna

• Research on open-source energy-efficient computing
architectures

• Started in 2013, celebrated 10 years of PULP last year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people

2Nils Wistoff | seL4 Summit 2024 | 2024-10-18

Platforms

RISC-V Cores and Vector Units

RI5CY
CV32E

RV32

Zero R
Ibex

RV32

Ariane
CVA6

RV64

Ara

RVV

Snitch

RV32

Spatz

RVV

Interconnects

AXI4

APB

LIC HCI

FlooNoC

Peripherals

DMA GPIO

I2SUART

SPIJTAG

Accelerators and ISA extensions

ITA
(Transformers)

RBE, NEUREKA
(QNNs)

FFT
(DSP)

XpulpNN,
XpulpTNN

REDMULE
(FP-Tensor)

R5

MI

O

in
te

rc
on

n
ec

t

A

Single core
• PULPino, PULPissimo
• Cheshire

IOT HPC

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
on

n
ec

t
Multi-core
• OpenPULP
• ControlPULP

R5

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
on

n
ec

t

Heterogeneous, Many-core
• Hero, Carfield, Astral
• Occamy, Mempool

R5

PULP open-source hardware ecosystem

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 3

github.com/pulp-platform

In 11 years PULP team has designed more than 60 chips

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 4

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 5

Speculative
Execution

+
Timing Channel

Spectre: Exploiting timing channels to leak data [1]

[1] Kocher et al., Spectre Attacks: Exploiting Speculative Execution , IEEE S&P 2019

Application A

Hardware

Application B

Timing channel

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 6

Application A
secret s

Application B

Spy

security
boundary

Supervisor (OS)

Hardware

Microarchitectural State

Trojan

Indirectly modify
depending on

secret

Measure
execution

time 0 1 2 3 4 5

50

40

30

20

10

Secret

Ti
m

e

Partition shared HW

no channel

On-core state (L1, BP, TLB, …)
Last-level caches

DRAM
System-level state (interco)

SW needs to know of all
HW components and how

to partition them

Spatial and temporal partitioning

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 7

Hardware Resource

Capacity
Unit

Capacity
Unit

Free
Allo-
cated

flush

Split all HW
resources into one or
more capacity units*

Each capacity unit
can be allocated
to one domain

Before reallocating a
capacity unit, flush it

Temporal partitioning

Spatial partitioning

• Number of available capacity units
given by HW

• Allocation policy determined by OS
* Terminology adopted from the
RISC-V CBQRI extension

Partitioning a system on chip

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 8

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

Partitioning the CPU

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 9

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

CPU

μArch
state

Free
Allo-
cated

flush

Reallocate (flush)
on context switch

Arb F IF OPLRU PLRU LF SRLF SR

clear

CVA6: 64-bit, application-class, 6-stage, in-order RISC-V core

fence.t
[TCOMP’23]

L1D Unmitigated L1D fence.t

M = 1667.3 mb, M0 = 0.5 mb M = 21.7 mb, M0 = 27.8 mb

0
0.5

1
1.5

2
2.5

3
3.5

4

Splash-2 Benchmark Overhead (%)

write-back L1 write-through L1

Average 0.7% overheadCloses all observed
timing channels

Negligible HW costs

Partitioning the CPU

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 10

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

OpenC910: 64-bit, application-class, 12-stage,
superscalar, out-of-order RISC-V core

fence.t.s
[ApplePies’24]

Chen et al., ISCA’20

CPU

μArch
state

Free
Allo-
cated

flush

Reallocate (flush)
on context switch

M = 4283 mb, M0 = 0.7 mb M = 64.3 mb, M0 = 71.0 mb

L1D Unmitigated L1D fence.t.s

0

0.5

1

1.5

2

Splash-2 Benchmark Overhead (%)

Average 1.0% overhead
Closes all observed

timing channels

Negligible HW costs

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 11

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

Interconnect

State

Free
Allo-
cated

flush

Challenges:
• Cores compete for bandwidth
• Interconnect contains state (e.g. arbiters)

Can be avoided
through coscheduling

Flush on context
switch

Work-in-progress

Partitioning the interconnect

Flush on context
switch

Partitioning the last-level cache

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 12

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

s
r
m
cf
g

RCID mem req

Domain A

Domain A

Domain A

Domain B

flush

Domain A

Free

Free

Domain B

allocate

Domain A

Domain B

Domain B

Domain B

Temporal partitioning

Sp
a

ti
al

p
ar

ti
ti

o
ni

n
g

LLC

Cache
set

Free
Allo-
cated

flush

Cache
set

Augment set
index with RCID

Augment set
index with RCID*

Flush before
reallocating

• Cache controller state comprises a
single capacity unit

• HW prototype implemented, system
integration/evaluation ongoing

* Terminology adopted from the RISC-V CBQRI extension

Partitioning DRAM

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 13

CPU0 CPU1

Interconnect

Last-level
cache

DRAM Pe
ri

p
he

ra
ls

Memory controller

Row buffer

Memory array

DRAM bank

DRAM

bank

Free
Allo-
cated

flush

bank

Precharge when
reallocating

Clear any state that might
leak (scheduler, arbiters, …)

Work-in-progress

AutoCC: A formal tool to find timing channels [MICRO’23]

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 14

Generate SystemVerilog
assertions to formally verify

non-interference

Identified and fixed three
counterexamples in CVA6

github.com/morenes/AutoCC

Carfield: Automotive platform for MCS

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 15

CVA6 with fence.tCVA6 with fence.tPartitionable LLC
Constant-time

off-chip memory

Taped-out in Intel 16
(16.0mm2, 600Hz@0.8V)

Conclusion

• Closing timing channels requires HW/SW co-design.

• By exposing HW partitioning mechanisms, all on-core timing channels can be
closed at minimal performance impact (1.0%) and negligible hardware overhead.

• Proven empirically on seL4, using formal verification, and in silicon!

• DRAM and interconnect still under investigation

• further need for HW/SW co-design expected.

• To be specified in RISC-V

Nils Wistoff | seL4 Summit 2024 | 2024-10-18 16

Microarchitecture Side Channels Special Interest Group
Timing Fences Task Group

Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH Zürich
Gloriastrasse 35
Zürich, Switzerland

DEI – Università di Bologna
Viale del Risorgimento 2
Bologna, Italy

Nils Wistoff nwistoff@iis.ee.ethz.ch
Gernot Heiser gernot@unsw.edu.au
Luca Benini lbenini@iis.ee.ethz.ch

	Slide 1: Hardware Support for Time Protection
	Slide 2: Team of 100 people in ETH Zürich – University of Bologna
	Slide 3: PULP open-source hardware ecosystem
	Slide 4: In 11 years PULP team has designed more than 60 chips
	Slide 5: Spectre: Exploiting timing channels to leak data [1]
	Slide 6: Timing channel
	Slide 7: Spatial and temporal partitioning
	Slide 8: Partitioning a system on chip
	Slide 9: Partitioning the CPU
	Slide 10: Partitioning the CPU
	Slide 11: Partitioning the interconnect
	Slide 12: Partitioning the last-level cache
	Slide 13: Partitioning DRAM
	Slide 14: AutoCC: A formal tool to find timing channels [MICRO’23]
	Slide 15: Carfield: Automotive platform for MCS
	Slide 16: Conclusion
	Slide 17

