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Team of 100 people in ETH Zürich – University of Bologna

• Research on open-source energy-efficient computing 
architectures

• Started in 2013, celebrated 10 years of PULP last year 

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people
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• OpenPULP
• ControlPULP
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Heterogeneous, Many-core
• Hero, Carfield, Astral
• Occamy, Mempool
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PULP open-source hardware ecosystem
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github.com/pulp-platform



In 11 years PULP team has designed more than 60 chips
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Speculative 
Execution

+
Timing Channel

Spectre: Exploiting timing channels to leak data [1]

[1] Kocher et al., Spectre Attacks: Exploiting Speculative Execution , IEEE S&P 2019



Application A

Hardware

Application B

Timing channel
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Partition shared HW

no channel

On-core state (L1, BP, TLB, …)
Last-level caches

DRAM
System-level state (interco)

SW needs to know of all 
HW components and how 

to partition them



Spatial and temporal partitioning
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Hardware Resource

Capacity 
Unit

Capacity 
Unit

Free
Allo-
cated

flush

Split all HW 
resources into one or 
more capacity units*

Each capacity unit 
can be allocated 
to one domain

Before reallocating a 
capacity unit, flush it

Temporal partitioning

Spatial partitioning

• Number of available capacity units 
given by HW

• Allocation policy determined by OS
* Terminology adopted from the 
RISC-V CBQRI extension



Partitioning a system on chip
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Partitioning the CPU
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Reallocate (flush) 
on context switch
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clear

CVA6: 64-bit, application-class, 6-stage, in-order RISC-V core

fence.t 
[TCOMP’23]

L1D Unmitigated L1D fence.t

M = 1667.3 mb, M0 = 0.5 mb M = 21.7 mb, M0 = 27.8 mb
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Average 0.7% overheadCloses all observed 
timing channels

Negligible HW costs



Partitioning the CPU
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OpenC910: 64-bit, application-class, 12-stage,
superscalar, out-of-order RISC-V core

fence.t.s 
[ApplePies’24]

Chen et al., ISCA’20
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Reallocate (flush) 
on context switch

M = 4283 mb, M0 = 0.7 mb M = 64.3 mb, M0 = 71.0 mb 
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Average 1.0% overhead
Closes all observed 

timing channels

Negligible HW costs
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State
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Challenges:
• Cores compete for bandwidth
• Interconnect contains state (e.g. arbiters)

Can be avoided 
through coscheduling

Flush on context 
switch

Work-in-progress

Partitioning the interconnect

Flush on context 
switch



Partitioning the last-level cache
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Cache
set

Augment set 
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Augment set 
index with RCID*

Flush before 
reallocating

• Cache controller state comprises a 
single capacity unit

• HW prototype implemented, system 
integration/evaluation ongoing

* Terminology adopted from the RISC-V CBQRI extension



Partitioning DRAM
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Precharge when 
reallocating

Clear any state that might 
leak (scheduler, arbiters, …)

Work-in-progress



AutoCC: A formal tool to find timing channels [MICRO’23]
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Generate SystemVerilog 
assertions to formally verify 

non-interference

Identified and fixed three 
counterexamples in CVA6

github.com/morenes/AutoCC



Carfield: Automotive platform for MCS
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CVA6 with fence.tCVA6 with fence.tPartitionable LLC
Constant-time 

off-chip memory

Taped-out in Intel 16
(16.0mm2, 600Hz@0.8V)



Conclusion

• Closing timing channels requires HW/SW co-design.

• By exposing HW partitioning mechanisms, all on-core timing channels can be 
closed at minimal performance impact (1.0%) and negligible hardware overhead.

• Proven empirically on seL4, using formal verification, and in silicon!

• DRAM and interconnect still under investigation

• further need for HW/SW co-design expected.

• To be specified in RISC-V
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Microarchitecture Side Channels Special Interest Group
Timing Fences Task Group
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