
CHERI-seL4: Enhancing seL4’s C/C++
userspace memory safety using CHERI

Hesham Almatary, Robert Watson, Capabilities Limited

seL4 Summit, 15 October 2024

Outline

Software Security

• Memory Safety

• Software Compartmentalisation

CHERI – Overview

• Why?

• How?

• Progress

• Next steps

CHERI-seL4

Software Security

Software Compartmentalisation

Split up a large monolithic software into smaller compartments in order to reduce the attack surface and limit the
effects of a successful attack only to the compromised compartment

Memory Safety

70% of software vulnerabilities are
memory-safety related in C/C++

e.g. Buffer overflows, control-flow,
double-free, etc.

Enables confidentiality, integrity,
and availability exploits

What is CHERI?

• Hardware-software capability-based architecture
• Been under development and research since 2010 by

University of Cambridge and SRI
• Prototypes on RISC-V and Arm (Morello)

• Software ecosystem: LLVM, CheriBSD, Morello Linux,
CheriFreeRTOS, CHERIoT etc.

• Core principles
• Intentionality
• Least privilege
• Source-code compatibility

Cambridge/SRI Arm Microsoft Google Codasip

Piccolo, Flute,
Toooba

Morello CHERIoT Ibex Codasip 700

Starting point:
CHERI on 64-bit
systems

• Hardware knows about pointers

• Pointers carry bounds

• Pointers carry permissions

• Pointers can’t be created from
thin air

• All guarantees are deterministic

• No guarantees rely on secrets

All memory access instructions
require a valid pointer operand

How does CHERI work

● Capabilities extend integer memory addresses

● Metadata (bounds, permissions, …) control how they may be used

● Guarded manipulation controls how capabilities may be manipulated; e.g., provenance

 validity and monotonicity

● Tags protect capability integrity/derivation in registers + memory

Address space

1
2

8
-b

it

c
a
p

a
b

ili
ty

v

1
-b

it

ta
g

permissions
Bounds compressed relative to

address
otype

64-bit address

Upper bound

Lower bound

Pointer

address
Memory

allocation

How does CHERI work

● Hardware:
○ Double register size
○ New CHERI instructions
○ Tagged memory
○ Hardware exceptions

● Software Protection Models:
○ Pointers Safety: hybrid or purecap

(CHERI C)
○ Compartmentalisation

CHERI C Guidelines

● Pointers are unforgeable capabilities

● Pointers are not integers: sizeof(void *) != sizeof(long)

● Minimum alignment for pointers is sizeof(void *)

● Provenance: pointers are only derived from other pointers

○ uint32_t *mmio_region = (uint32_t *) (0xc0000000) - WRONG - Provenance violation

○ An OS or loader should create capabilities for MMIO regions

○ Code that performs bitwise arithmetic between uintptr_t is prone to error

uintptr_t mutex_value = FLAG | (uintptr_t)(curthread) - WRONG - Provenance loss

○ If FLAG increases the bounds (e.g., embedding data in the high bits of the address)

○ Additional implications for code that makes assumptions about the shape of a pointer

● Monotonicity: A derived pointer cannot extend bounds or permissions

○ A memory allocator should set bounds on capabilities

● Further reading: CHERI C/C++ Programming Guide https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

CHERI/CompartOS Software Compartmentalisation

CheriFreeRTOS components and the
application execute in compartments. CHERI
contains an attack within TCP/IP
compartment, which access neither flash nor
the internals of the software update (OTA)
compartment.

seL4

• seL4 is a secure microkernel –

formally verified

• Gives isolation guarantees

between user-level protection

domains

• No C/C++ memory safety,

guarantees at user-level

CHERI-seL4 – Why?

seL4

CHERI

CHERI-
seL4

Great software technology
with formal verification for
separating inter-AS
protection domains

Great hardware-software
technology for single-AS
memory safety and software
compartmentalisation

What could it mean to bring
both together?
This is an under-explored
design space

CHERI-seL4 – Why?
Combine two security technologies: seL4’s formal
verification for CIA isolation guarantees between
seL4 protection domains and CHERI’s memory-

safety guarantees and software
compartmentalisation within single-AS seL4

protection domains.

Enhances the
overall system’s

security.

Reduces the overall
attack surfaces that
might get exploited

Protect lives,
economies,

infrastructures,
sensitive customer

data, etc

CHERI-seL4 – Why? Ideal goal

Memory safety

Software
compartmental isation

CHERI-seL4 – Approach and Goals
CHERI-seL4: shared unified kernel codebase, ideally no forks

CHERI OFF

Maintain all existing seL4 guarantees

Minimal to no effects on verification

No non-CHERI broken builds, tests, etc

All CHERI-related code is hidden and
guarded, and not compiled

Just renaming, parameterisations, and
clean-ups of shared code

Same ABI, same performance, same
types/sizes (eventually), same output
binary

CHERI ON

Will not bypass any existing seL4
guarantees (eg. no privilege
escalation)

Not verified, but could be in the future

Immediately enable complete spatial
memory-safety (purecap) for C/C++
user-space.

Feature-rich to allow design-space explorations
on top (eg: software compartmentalisation,
temporal safety, etc)

Same seL4 API, new CHERI purecap
ABI

CHERI-seL4 – CHERI ON –
Community Expectations

Design-space exploration

System research

Implement what we think is right, from CHERI perspective

seL4 just provides the mechanism for the user to implement CHERI-
based security policies, including memory-safety and software
compartmentalisation

Flexible, generic, and clean design and implementation to enable as
many features as possible, use cases, and R&D projects on top

What are we trying to achieve?

CHERI-seL4 – CHERI ON – How?

Hybrid

Relatively minimum changes

Would not change seL4’s capability
representation

Likely to break verification, but
probably not as much as purecap.

Kernel pointers stay integers (word_t)

Shared

libsel4's pointers to be capabilities

IPC buffer messages to be of CHERI
capabilities type

System call arguments of CHERI
capabilities type

Register context saves/restores to
be always CHERI-capability aware

CHERI hardware initialisation at
kernel boot

CHERI initialisations for BootInfo and
the root task, and any user pointers

New CHERI fault message

Export CHERI PTE bits to user pages

Purecap

Maintain functional correctness and
API capability of seL4 and its user-
space

Changes the seL4 capability
representation to embed CHERI
pointers.

Any pointer is a CHERI capability

Most kernel object sizes are
increased to hold CHERI pointers

Breaks verification

Easier to port and reason about
(from CHERI perspective).

Provenance: no need to re-construct
CHERI capabilities in the kernel after
booting to user, except in very rare
circumstances

CHERI-seL4: user-space always purecap, but the kernel could be:

CHERI-seL4 – Progress

PR and RFC submitted submitted

Firmware

• Elfloader: Could optionally be built in purecap for some targets
• OpenSBI: Not purecap yet, but hybrid just to preserve tags and capabilities

Kernel

• PR and RFC submitted to support CHERI-seL4 in the kernel
• CHERI-RISC-V (RV32 and RV64)

• Arm Morello: 4 new platforms submitted – QEMU, FVP, bhyve, and Morello SoC board.

• Purecap kernel only so far, with shared snippets for hybrid

• Enables building and running complete all-purecap seL4 user-space

Userspace

• Able to run complete purecap projects (sel4test and sel4bench)
• All C/C++ seL4 user libraries that sel4test and sel4bench are using are ported to purecap

• sel4test passes all tests in purecap

We have complete all-purecap sel4test running and passing all tests

https://github.com/seL4/seL4/pull/1322
https://github.com/seL4/seL4/issues/1158

CHERI-seL4 – Remaining work

HYBRID KERNEL BENCHMARKING RELEASING PURECAP
USER-SPACE AND

FIRMWARE

DOCUMENTATION
AND TUTORIALS

CHERI-seL4 – Future work

• Hypervisor support

• MCS and SMP support

• CHERI’s temporal safety

• Software Compartmentalisation (e.g., to automatically sandbox third-party

libraries)

• Port other C/C++ projects to CHERI-seL4 (e.g., Microkit, LionsOS, Unikernels)

• Lots of other R&D project ideas

Conclusions CHERI-seL4 is aiming to combine
both seL4 and CHERI
technologies to enhance the
overall security

Good progress on CHERI-seL4
shows it is feasible and opens
lots of future potentials

Still work-in-progress. We would
love to get your input. Help us
make this the most useful for the
seL4 and CHERI communities

Acknowledgment

• Thanks to the CHERI group and

David Chisnall for permitting

usage of some of their slides

• We also thank TrustedST, MCA,

Sid Agrawal, Codasip, and seL4

foundation for the discussions

and collaboration on this work so

far.

heshamalmatary@capabilitieslimited.co.uk

Resources

● Watson, Robert NM, et al. Capability hardware enhanced RISC instructions:

CHERI instruction-set architecture (version 9). No. UCAM-CL-TR-987. University

of Cambridge, Computer Laboratory, 2023.

● Almatary, Hesham, et al. "CompartOS: CHERI compartmentalization for

embedded systems." arXiv preprint arXiv:2206.02852 (2022).

● Almatary, Hesham. CHERI compartmentalisation for embedded systems. Diss.

2022.

● Almatary, Hesham, Alfredo Mazzinghi, and Robert NM Watson. "Case Study:

Securing MMU-less Linux Using CHERI." SE 2024-Companion. Gesellschaft für

Informatik eV, 2024.

● CHERI Website: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

Why not just use Rust userspace on seL4

● Unsafe pointers

● Toolchain supply chain

● No dynamic software compartmentalisation that defends against unknown zero-

day vulnerabilities.

● Maintenance and cost overhead to re-write existing C/C++ applications in Rust

● Re-writing codebase in Rust could introduce new bugs

● Re-writing third-party libraries (eg crypto) in Rust is hard

● Cannot compartmentalise existing C/C++ libraries automatically like with CHERI

● Learning overhead for developers because Rust is relatively new

● Ideally port Rust to run on CHERI

● CHERI Myths: I don't need CHERI if I have safe languages

https://cheriot.org/cheri/myths/2024/08/28/cheri-myths-safe-languages.html

CHERI-seL4: Current progress in a figure

	Slide 1: CHERI-seL4: Enhancing seL4’s C/C++ userspace memory safety using CHERI
	Slide 2: Outline
	Slide 3: Software Security
	Slide 4: What is CHERI?
	Slide 5: Starting point: CHERI on 64-bit systems
	Slide 6: How does CHERI work
	Slide 7: How does CHERI work
	Slide 8: CHERI C Guidelines
	Slide 9: CHERI/CompartOS Software Compartmentalisation
	Slide 10: seL4
	Slide 11: CHERI-seL4 – Why?
	Slide 12: CHERI-seL4 – Why?
	Slide 13: CHERI-seL4 – Why? Ideal goal
	Slide 14: CHERI-seL4 – Approach and Goals
	Slide 15: CHERI-seL4 – CHERI ON – Community Expectations
	Slide 16: CHERI-seL4 – CHERI ON – How?
	Slide 17: CHERI-seL4 – Progress
	Slide 18: CHERI-seL4 – Remaining work
	Slide 19: CHERI-seL4 – Future work
	Slide 20: Conclusions
	Slide 21: Acknowledgment
	Slide 22: heshamalmatary@capabilitieslimited.co.uk
	Slide 23: Resources
	Slide 24: Why not just use Rust userspace on seL4
	Slide 25: CHERI-seL4: Current progress in a figure

