
Transitioning from 
CAmkES VMM to 
Microkit VMM
An experience report

Leigha VanderKlok, Embedded Engineer II

leigha.vanderklok@dornerworks.com

Michigan, USA



Agenda

○ Reasons to use Microkit

○ My experience

○ Developing real world products

○ How DornerWorks can help

2



Background

○ DornerWorks has a tremendous amount of experience working with seL4 CAmkES VMM technology

• Have done work for multiple aerospace, defense firms (NASA, Collins Aerospace, US Army, and others)

○ Tested several simple Microkit virtual machine configurations

• ZCU102 – not yet fully supported, but close

○ Compared Microkit VMM to CAmkES VMM and assessed against a list of requirements

3
Grand Rapids, MI



○ Technical perspective

• Integration with seL4 Device Driver Framework (sDDF)

• Easier development process and less intimidating

• Simpler abstractions and fewer abstractions could lower the barrier to entry

• Stay up to date

• Write applications in non-C languages

○ Business perspective

• Quicker on-boarding time is a plus for our customers and new engineers

○ DornerWorks can provide insight for Microkit as a business use case

Why use to Microkit VMM?

4



High-Level Microkit 
vs CAmkES

5

Difference Microkit CAmkES

Distribution Distributed as an 
SDK

Source code and project 
files managed using repo 
tool.

High-level 
application 
configuration

System description 
file – written in xml.

Editing CAmkES attributes 
and settings in multiple 
application files.

Build system No formal system. CMake for file generation. 
Ninja is the build 
automation tool.

Language: Tooling 
and Libraries

Primarily Rust Primarily C, parts of the 
toolchain are written in 
Python 



What we like

○ Simpler environment setup

• Fewer dependencies

• Install as SDK, no need to manage over a dozen 
separate git repos

• Easy to grasp abstract concepts, user friendly 
manual

6

○ System reporting feature (report.txt file) 

• A snapshot of a running system, describes 
which entities have access to which seL4 
capabilities

• Lists physical addresses of guest RAM and ELF 
file regions

• Documents that there is no overlap in guest 
memory between VMs



Learning experience

○ Need to make U-Boot changes if using some Xilinx boards with Microkit 

• U-Boot platform specific for some boards (ZynqMP and Versal) override the default U-Boot behavior that drops from EL2 to EL1 
when executing the image using the ‘go’ command

• Small changes must be made to U-Boot source to work with Microkit, extra step not needed for CAmkES

○ Requires more manual configuration than CAmkES VMM

• CAmkES can have a steeper learning curve

• But…

• A lot more code is generated (has a build system)

• Most configuration is done via attributes and clearly laid out settings

• Feels like I have a menu of options to choose from and a starting place

• With Microkit it can be cumbersome to create a new design from scratch

• More on this later!

7



Developing Real World Products

○ Assessed Microkit readiness level using a 28-point test which analyzed

❑ Type of supported platforms

❑ Ability to passthrough devices

❑ CPU pinning capabilities

❑ Single and multiple virtual machine configurations

❑ Architecture support

❑ and more

8



Developing Real World Products

Important to our business:

○ x86 support

• Seeing a growth of demand for seL4 on x86

• DornerWorks has been supporting a lot of seL4 x86 development

• Customers desire:

• High compatibility with modern and legacy software

• x86 is used in more high-end computing platforms, where Intel has a large market share

○ Multiple vCPUs per virtual_machine instance

• Useful to DornerWorks use case, tend to use seL4 with hypervisor support enabled

• Need to make full use of all cores a platform has for Linux to use and run on top of seL4

• Won’t be ready to transition without this

9



10

○ Dilemma: Microkit can require more manual 
configuration than CAmkES

• Ex; UART device passthrough: need to add 
memory regions, then map into a VM with the 
IRQ

• CAmkES: add path to dtb attribute / hardware 
abstraction

• Devs will start with known working example 
and then modify

○ Generates all the code needed for a 
complete project and builds bootable 
images

○ Currently generates CAmkES-based designs 
only

VM Composer



Theoretical Microkit VMM Example: Serial Server

11

○ Simplify copying and 
pasting boilerplate code

○ Learn how a project is 
generated

○ Ease some of Microkit’s 
inconveniences



12

○ DornerWorks’ engineers are excited to try Microkit

○ Planning to add Microkit support to VM Composer

○ Still need features to make an effective business use case to our customers

○ Questions?

Conclusion


	Slide 1: Transitioning from CAmkES VMM to Microkit VMM An experience report
	Slide 2: Agenda
	Slide 3: Background
	Slide 4: Why use to Microkit VMM?
	Slide 5: High-Level Microkit vs CAmkES
	Slide 6: What we like
	Slide 7: Learning experience
	Slide 8: Developing Real World Products
	Slide 9: Developing Real World Products
	Slide 10: VM Composer
	Slide 11: Theoretical Microkit VMM Example: Serial Server
	Slide 12: Conclusion 

