
© 2022 Collins Aerospace

CYBER ASSURED

SYSTEMS ENGINEERING

S E L 4 S U M M I T

1 1 O C T O B E R 2 0 2 2

D A R R E N C O F E R

1This document does not include any export controlled technical data.

© 2022 Collins Aerospace

D A R PA H A C M S
H I G H A S S U R A N C E C Y B E R M I L I T A R Y S Y S T E M S

3

Loonwerks.com/projects/hacms
April 2017

© 2020 Collins Aerospace

4

August 2021

© 2022 Collins Aerospace

• Design-in cyber-resiliency
• Automated architecture transforms for threat mitigation

• High assurance components generated from specifications

• Techniques to deal with legacy code (“cyber retrofit” using virtual machines)

• Build what you model
• Build system directly from detailed, verified AADL model

• Make the security guarantees of seL4 accessible to system developers

• Ability to target different platforms to facilitate incremental

debugging/development

• Provide evidence
• Formal verification of functional and cyber-resiliency properties, information

flow properties, component proofs

• Code generation equivalence to model, seL4 build preserves properties

• Integrate evidence as an assurance case demonstrating how/why

requirements are satisfied

CYBER ASSURED SYSTEMS ENGINEERING (CASE)

5

Develop model-based systems engineering tools and workflow to

make the HACMS approach repeatable, scalable, more incremental

US Army

ACVIP

© 2022 Collins Aerospace

W I T H I N T E G R A T E D A S S U R A N C E

B R I E F C A S E I N T E G R AT E D W O R K F L O W

7

SAE AS5506 STANDARD

1. Capture/import cyber-resiliency requirements based on

initial AADL model analysis (GearCASE and DCRYPPS)

2. Transform system architecture model to satisfy cyber-

resiliency requirements

3. Generate new high-assurance components from formal

specifications (SPLAT) or pre-verified libraries

4. Verify system design using formal methods (AGREE) and

information flow analysis (Awas)

5. Checks model conformance to standards (Resolint)

6. Generate software integration code (HAMR) directly from

verified architecture models, targeting multiple operating

systems (including seL4)

7. Document evidence/compliance with assurance case

(Resolute)

© 2022 Collins Aerospace

BRIEFCASE TOOL ARCHITECTURE

9

OSATE

MODELING

ENVIRONMENT

AADL model

CakeML

compiler
Pre-verified component

code (Attestation)
C compiler

Hand-written

component code

Pre-verified

code (seL4)

SPLATSynthesized

code

HAMR

Generated

code
CAmkES

config files

Cyber

Transforms
Requirements

Analysis

AGREE Resolute Assurance

Case
Awas

Info

Flow

BUILD ENVIRONMENT

CAmkES

System executable

© 2022 Collins Aerospace

E X P E R I M E N T A L P L A T F O R M : S M A L L U A V

SYSTEM ARCHITECTURE TRANSFORMATION

10

© 2022 Collins Aerospace

A S S U R A N C E C A S E B U I LT A U T O M AT I C A L LY

SYSTEM ARCHITECTURE TRANSFORMS

• Address some system requirement

• Goal to be met in assurance case

• Modify model, specifying any new connections and interfaces

• Formal contract describing new component behavior

• Implementation of that behavior

• Synthesized from specification or pre-verified library

• Automatically update assurance case to document this information

• What has been done to the model to address this requirement (and why)?

• Linked to evidence supporting the requirement (goal)

• Why is the requirement also true for the implementation?

• Example transforms

• Filter, Monitor, Gate (controlled by monitor)

• Attestation (remote computer trustworthy?)

• Virtualization, seL4 build prep

11

Each model transformation accomplishes the following:
annex Resolute {**

goal: SystemRequirement

Mon

annex Agree {**
assume: constraint
guarantee: property

runMon(in1, in2) {
code code code;
code code code;
code code code:
...

© 2022 Collins Aerospace

• Resolute is an AADL annex that embeds assurance case rules into the system model

• Constructs an assurance argument from evidence contained in the model

• Can include heterogeneous evidence –analysis results, test, review

• Assurance argument updated as the model evolves

• Claims/goals may or may not be satisfied depending on the state of the model

RESOLUTE ASSURANCE CASE

12

© 2022 Collins Aerospace

• Some of the cyber transforms insert new

high-assurance components into the model

• The behavior of the component (its contract)

is specified in AGREE

• SPLAT generates component

implementations from their specifications

• SPLAT also generates a proof showing that

the component implements its specification

GENERATE HIGH ASSURANCE COMPONENTS

Proof
• Other components (e.g., Attestation Manager)

are pre-built pre-verified libraries

• Their implementations are essentially library

functions that are added to the build, possibly

with some configuration data from the model

13

• Code can be generated in the CakeML

language which has a verified compiler

SPLAT

C

MODELS 2021

© 2022 Collins Aerospace

contract contract

contract contract contract contract

A S S U M E G U A R A N T E E R E A S O N I N G E N V I R O N M E N T (A G R E E)

ANALYZE SYSTEM BEHAVIOR

• Contract-based compositional reasoning provides scalability

• Each component has a contract consisting of assumptions and guarantees

• The contract of a component abstracts the behavior of its implementation

• Contracts at each layer must be satisfied by contracts of its subcomponents

• Leaf component contracts must be satisfied by implementation

14

A
G

R
E
E

 a
n

a
ly

s
is

 o
f

A
A

D
L contract contract

contract

contract contract

contract contract

ON

LATERAL 1

ROLL 1

SELECTED
en: ROLL_selected = true

ex: ROLL_selected = false

ACTIVE
en: ROLL_active = true

ex: ROLL_active = false

CLEARED

HDG 2SELECTED
en: HDG_selected = true
ex: HDG_selected = false

ACTIVE
en: HDG_active = true

send(deactivate , ROLL)
send(deactivate , NAV)
send(deactivate , LAPPR)

send(deactivate , GA)
ex: HDG_active = false

CLEARED

NAV 3
SELECTED

en: NAV_selected = true

ex: NAV_selected = false

ACTIVE

en: NAV_active = true
send(deactivate , ROLL)
send(deactivate , HDG)

send(deactivate , LAPPR)
send(deactivate , GA)

ex: NAV_active = false

ARMED
CLEARED

LAPPR 4
SELECTED

en: LAPPR_selected = true

ex: LAPPR_selected = false

ACTIVE

en: LAPPR_active = true

send (deactivate , ROLL)

send (deactivate , HDG)

send (deactivate , NAV)

send (deactivate , GA)

ex: LAPPR_active = false

ARMED
CLEARED

GA 5
SELECTED
en: GA_selected = true
ex: GA_selected = false

ACTIVE
en: GA_active = true

send(deactivate , ROLL)
send(deactivate , HDG)

send(deactivate , NAV)
send(deactivate , LAPPR)

ex: GA_active = false

CLEARED

VERTICAL 2

OFF

[On]

[Off]

activate

deactivate

[HDG_select]

[HDG_clear] {send(activate, ROLL)}

deactivate

[NAV_select]

[NAV_clear] { send (activate , ROLL)}

deactivate

[NAV_capture]

[LAPPR_select]

[LAPPR_clear] { send (activate , ROLL)}

deactivate

[LAPPR_capture]

[GA_select]

[GA_clear] {send(activate, ROLL)}

deactivateC
o

m
p

o
n

e
n

t

Im
p

le
m

e
n

ta
ti

o
n

A

B

C
Assumption:

Input < 20
Guarantee:

Output < 2*Input

Assumption:
Input < 20
Guarantee:

Output < Input + 15

Assumption: none
Guarantee:

Output = Input1 + Input2

Assumption:
Input < 10
Guarantee:

Output < 50

A

guarantees

B

assumptions

Composition

Modularity

© 2022 Collins Aerospace

H A M R A N D S E L 4

SOFTWARE INFRASTRUCTURE

• HAMR is a multi-stage translation architecture to

address CASE goals of component migration between

platforms and information flow control

• Semantic consistency from model to execution

• Ensures model-level analysis applies to deployed code

• Same computational model across different platforms

• Build for multiple target platforms:

• seL4 / Linux / Virtual Machine

• Build for workstation / emulator / embedded platform

A
A
D

L
 P

o
rt

 C
o
m

m
 S

e
rv

ic
e

A
b
s

L
a
y
e
r

Application Code

A
A
D

L
 I

n
fr

a
st

ru
ct

u
re

 P
o
rt

C
o
m

m
u
n
ic

a
ti
o
n
 A

b
s

L
a
y
e
r

P
la

tf
o
rm

 C
o
m

m

In
fr

a
st

ru
ct

u
re

P
ro

g
 L

a
n
g
u
a
g
e
 A

A
D

L
 P

o
rt

C
o
m

m
 A

b
s

L
a
y
e
r

Platform Thread Infrastructure

AADL Thread Infrastructure Abs Layer

AADL Thread Entry
Points/ Dispatch Logic

P
ro

g
 L

a
n
g
u
a
g
e
 A

A
D

L
 P

o
rt

C
o
m

m
 A

b
s

L
a
y
e
r

A
A
D

L
 P

o
rt

 C
o
m

m
 S

e
rv

ic
e

A
b
s

L
a
y
e
r

A
A
D

L
 I

n
fr

a
st

ru
ct

u
re

 P
o
rt

C
o
m

m
u
n
ic

a
ti
o
n
 A

b
s

L
a
y
e
r

P
la

tf
o
rm

 C
o
m

m

In
fr

a
st

ru
ct

u
re

H
A

M
R

c
o
d
e

g
e
n
e
ra

ti
o
n

seL4 is…

• An operating

system microkernel

• A hypervisor

• Proved correct

• Provably secure

• Fast

• seL4 microkernel guarantees partitioning of components and

communication, backed by computer-checked proofs

• seL4 guarantees no infiltration, exfiltration, eavesdropping,

interference, and provides fault containment for untrusted code

• Ensures soundness of the MBSE design process –

components can be analyzed separately and composed safely

15

© 2022 Collins Aerospace

HAMR SUPPORTS MULTIPLE

LANGUAGE/ PLATFORM COMBINATIONS

The flexibility of being able to easily shift between different platforms was quite useful as the team
experimented with building the Phase 2 Experimental Platform assessment deliverable.

JVM/Slang – data types, port constraints, basic
aspects of application logic, initial unit testing – some
mocked up components, many useful visualizations

Linux C – compile Slang to C, or manually code
C, and debug C implementation, VMs mocked up

seL4 C / Qemu – C application code easily
ports to seL4 native components, add in VMs,
test/simulate/debug in Qemu

seL4 C / board – seL4 build shifted to actual
hardware for final testing and deployment

AADL / OSATE – design
model, types, perform analyses

16

© 2022 Collins Aerospace

Unit hamr_SW_WaypointPlanManagerService_thr_Impl_Impl_timeTriggered_(

STACK_FRAME

hamr_SW_WaypointPlanManagerService_thr_Impl_Impl this) {

bool dataReceived = false;

size_t numBits = 0;

uint8_t payload[MAX_PAYLOAD];

dataReceived =

api_get_ReturnHome__hamr_SW_WaypointPlanManagerService_thr_Impl_Impl(this);

if (dataReceived) {

returnHome = true;

}

if (returnHome || automationResponse != NULL) {

dataReceived =

api_get_AirVehicleState__hamr_SW_WaypointPlanManagerService_thr_Impl_Impl(

this, &numBits, payload);

if (dataReceived) {

air_vehicle_state_in_event_data_receive_handler(this, payload);

}

}

}

HAMR ABSTRACTION LAYERS

A
A
D

L
 P

o
rt

 C
o
m

m

S
e
rv

ic
e
 A

b
s

L
a
y
e
r

Application
Code

A
A
D

L
 I

n
fr

a
st

ru
ct

u
re

 P
o
rt

C
o
m

m
u
n
ic

a
ti
o
n
 A

b
s

L
a
y
e
r

P
la

tf
o
rm

 C
o
m

m

In
fr

a
st

ru
ct

u
re

P
ro

g
 L

a
n
g
u
a
g
e
 A

A
D

L

P
o
rt

 C
o
m

m
 A

b
s

L
a
y
e
r

… …

Platform Thread Infrastructure

AADL Thread Infrastructure Abs Layer

AADL Thread Entry
Points/ Dispatch

Logic

T1

T2

P1P2P3P4

T3

P
ro

g
 L

a
n
g
u
a
g
e
 A

A
D

L

P
o
rt

 C
o
m

m
 A

b
s

L
a
y
e
r

A
A
D

L
 P

o
rt

 C
o
m

m

S
e
rv

ic
e
 A

b
s

L
a
y
e
r

A
A
D

L
 I

n
fr

a
st

ru
ct

u
re

 P
o
rt

C
o
m

m
u
n
ic

a
ti
o
n
 A

b
s

L
a
y
e
r

P
la

tf
o
rm

 C
o
m

m

In
fr

a
st

ru
ct

u
re

Port
communication
APIs

Threading APIs

17

By changing the implementation of these layers,
we can easily switch to different platforms or
different programming languages

© 2022 Collins Aerospace

• All information flows in AADL model are accurately preserved in HAMR generated code

• Connects AADL information flow analysis to seL4 security proofs

HAMR CORRESPONDENCE PROOF

18

AADL Model

Component

HAMR generates a
topological structure
(formally specified)

Port

Connection

HAMR
Generates
Traceability
Information

C
o
m

p
o
n
e
n
t

T
ra

ce
a
b
ili

tyP
o
rt

T
ra

ce
a
b
ili

ty

Application
code for

component

Port

Connection

Executable Code and
Configuration Information

HAMR generates a
topological structure
(formally specified)

Observation point
in code associated
with port input

Observation point
in code associated
with port output

Flow-path in code corresponding

to realization of communication

for connection

FlowPreservation (formal SMT spec): For every
connection between two components in AADL,
there is a flow path in the source code between
code artifacts associated with the ports.

NoNewFlows (formal SMT spec): For every flow
path between two components in the source
code, there is a connection in the AADL model
between corresponding ports.

© 2022 Collins Aerospace

END-TO-END INTEGRATED FORMAL VERIFICATION

system properties (AGREE)

architecture properties (AGREE)

high-assurance components legacy components

HAMR correspondence proof

CAmkES translation proof

seL4 initializer proof

seL4 proof

assurance

case

19

© 2022 Collins Aerospace

22

CASE FINAL DEMO

C O L L I N S C U S T O M E R E X P E R I E N C E C E N T E R

H U N T S V I L L E A L

D E C E M B E R 2 0 2 1

© 2022 Collins Aerospace

C O L L I N S C O M M O N A V I O N I C S A R C H I T E C T U R E S Y S T E M (C A A S)

FINAL DEMO PLATFORM : BASELINE

• Goal : Extend (securely) to add wireless connectivity

23

ADS-B
VDTU

DATABASE
VPM

Switch
Digital switch

on PSM1

Other CAAS

Components

Wireless

Router

Pilot

Tablet1

Soldier

Tablet2

Wireless device access

© 2022 Collins Aerospace

C O L L I N S C O M M O N A V I O N I C S A R C H I T E C T U R E S Y S T E M

FINAL DEMO PLATFORM : HARDENED

ADS-B
VDTU

DATABASE
VPM

Switch
Digital switch

on PSM1

Other CAAS

Components

Wireless

Router

Pilot

Tablet1

Soldier

Tablet2

Wireless device access

BriefCASE tools:

• Attestation of tablet(s)

• Filter messages to/from tablets

• Monitor ADS-B traffic for spoofing

• seL4 hosting Linux

• Attestation

24

Change network topology to use Video Processing

Module (VPM) as gateway between lower assurance

wireless network/components and rest of CAAS

© 2022 Collins Aerospace

C O L L I N S C O M M O N A V I O N I C S A R C H I T E C T U R E S Y S T E M

DEMO PLATFORM : ATTACKS

ADS-B
VDTU

DATABASE
VPM

Switch
Digital switch

on PSM1

Other CAAS

Components

Wireless

Router

Pilot

Tablet1

Soldier

Tablet2

Wireless device access

25

DELETE
DATAMALICIOUS

DATA
DISPLAYED

SPOOFED

AIRCRAFT

MALICIOUS

CODE

Measure

and block

Monitor

and tag

© 2022 Collins Aerospace

• Tool source code resides in several public GitHub

repositories
https://github.com/loonwerks/CASE-Final

also {/BriefCASE, /splat, /AGREE, /Resolute, /jkind}

https://github.com/ku-sldg

https://github.com/seL4

https://github.com/CakeML/cakeml

https://github.com/sireum

• Integrated OSATE/AADL tools and plugins

• Vagrant VM
• Provides automatic, consistent, and reproducible provisioning of

VM and native environments for developing and testing all CASE

tools

• Documentation
• Workflow example tutorial and models

• User Guide

• Videos, publications

• Overview

• http://loonwerks.com/projects/case.html

OPEN-SOURCE SOFTWARE TOOL DISTRIBUTION

28

© 2022 Collins Aerospace

CYBER-ASSURED SYSTEMS ENGINEERING AT SCALE

29

Also available at: https://loonwerks.com/publications/cofer2022secpriv.html

https://loonwerks.com/publications/cofer2022secpriv.html

© 2022 Collins Aerospace

Come to our Bootcamp session!

• Learn to use the BriefCASE tools

• Address cyber-resiliency requirements on a small

example, analyze properties, generate code,

create assurance argument, build and run

system on seL4 (in QEMU)

• VM with all tools, models, and instructions

• Get it from Darren or Isaac, or download from

github before the session

BRIEFCASE TUTORIAL

30

© 2022 Collins Aerospace

QUESTIONS?

This document does not include any export controlled technical data.

