
Rafal Kolanski | seL4 summit 2022, Munich, Germany

seL4® verification roadmap
Rafal Kolanski, June Andronick, Gerwin Klein @Proofcraft

seL4 is a registered trademark of LF Projects, LLC

2

“The” seL4 Theorem(s)
different levelsdifferent configs

seL4 keeps evolving Verification makes seL4 unique

seL4’s formal proofs must evolve as well

Proofcraft is committed to keep this evolution alive

Success pushed evolution

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

Parallel verification creates challenges,
Convergence is planned

Success pushed evolution

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

Parallel verification creates challenges,
Convergence is planned

▶

Started as…

5

binary verification

functional
correctness

security

init abstract spec

design spec

formalised C

proof

proof

invariants

Then…
Success!

Interest!

Customers!

6

I want it all. And I want it now.

Photo by Nathan Dumlao on Unsplash

I want seL4 verified “with X on Y”

7

Photo by Slashio Photography on Unsplash

ARM

RISC-V

x86

32b

64b

32b

64b

32b

64b

HYP …

(It’s usually what we don’t have in stock :)

UNICORE MULTICORE

seL4-vanilla

seL4-MCS

MCS = Mixed-Criticality Systems

8

different levelsdifferent configs

“The” seL4 Theorem(s)

Success pushed evolution

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

Parallel verification creates challenges,
Convergence is planned

▶

Started as…

10

binary verification

functional
correctness

security

init

Arm 32-bit

(non-MCS)
(unicore)

Then…

11

Arm 32-bit

Then…

12

Arm 32-bit
HYP

Arm 32-bit
(no HYP)

👍 DARPA
👍 NICTA

👍 US Army

👍 AOARD, DARPA

Then…

13

Arm 32-bit

14

x86 64-bit

Arm 32-bit

Then…

👍 DARPA

15

x86 64-bit

Arm 32-bit

Then…

16

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Then…

👍 HENSOLDT Cyber

👍 TS @ UNSW

17

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Then…

18

Arm 64-bit (HYP!)

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Done
Ongoing
Future

seL4 proofs

(non-MCS, unicore)

NEW
!

seL4’s formal proofs evolve
with new architectures

Then…

👍 NCSC

Success pushed evolution

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

Parallel verification creates challenges,
Convergence is planned

▶

20

The proofs have evolved with new features over the years

Two examples:

• bound notification endpoints

• bitfield scheduler optimisation

MCS is different:

• Mixed-Criticality Systems

• time as a resource

• large, invasive change

Big Feature: Mixed-Criticality Systems

21

non-MCS

MCS

Verification of multiple configs in parallel

Arm
32-bit

RISC-V
64-bit

functional

abstract spec

design spec

formalised C

proof

proof

invariants

functional
correctness

22

non-MCS

MCS

NEW
!

seL4’s formal proofs evolve
with new features

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

👍 seL4 Foundation

👍 HENSOLDT Cyber
👍 DHS

Success pushed evolution

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

Parallel verification creates challenges,
Convergence is planned▶

Challenges

Arm
32-bit

RISC-V
64-bit

24

non-MCS

MCS

Any proof framework improvements are not
easily usable on the MCS branch

without duplicating work

Any kernel code optimisation or evolution
requires updating the proofs

on all the verified configurations

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

Roadmap

Arm
32-bit

RISC-V
64-bit

25

non-MCS

MCS

Multicore investigations

MCS can become the default
configuration once all existing

proofs completed on MCS

Eventually, seL4 verified on multicore,
with unicore as an instance

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

Status and funding situation
Arm 64-bit

26

non-MCS

MCS Arm
32-bit

RISC-V
64-bit

Funded: Functional correctness invariants

Funding needed for:

• the 2 refinements

• the port of the other proofs (binary, security, init)

Funded: the start of C refinement proof

Funding needed for:

• finishing the C refinement

• porting the other proofs (binary, security, init)

• porting the other architectures (x86, Arm32 HYP)

Conclusion

27

seL4’s formal proofs evolve
with new architectures:

verified AArch64 seL4 is coming!

seL4’s formal proofs evolve
with new features:

verified MCS seL4 is coming!

Convergence and funding
drive the roadmap:

Contact us if you’re interested!

https://proofcraft.systems

https://proofcraft.systems

